

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 7528-7532

A new and efficient method for the facile synthesis of N-acyl sulfonamides under Lewis acid catalysis^{\ddagger}

Chada Raji Reddy,* Bodugam Mahipal and Srinivasa Rao Yaragorla

Organic Division-I, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 3 July 2007; revised 4 August 2007; accepted 13 August 2007 Available online 16 August 2007

Abstract—The N-acylation of sulfonamides with carboxylic acid anhydrides in the presence of Lewis acids is described. Several Lewis acids such as BF₃·Et₂O, ZnCl₂, MoCl₅, TiCl₄, B(C₆F₅)₃, Sc(OTf)₃ and I₂ were found to catalyze the reaction efficiently to furnish the N-acylated products in good yields under solvent-free conditions. The reactions of various sulfonamides were studied with different carboxylic acid anhydrides including the less reactive benzoic and pivalic anhydrides, in the presence of 3 mol % ZnCl₂ as the catalyst. Carboxylic acids were also successfully used as acylating agents via the mixed anhydride method. © 2007 Elsevier Ltd. All rights reserved.

N-Acylation of sulfonamides is an important transformation since it affords products of significant potential for use in biological applications.¹ This transformation is also a useful tool for lead optimization and lead generation.² *N*-Acyl sulfonamides with their acidity makes them suitable carboxylic acid proxies,³ while their resistance to chemical and enzymatic hydrolysis renders them amenable for use as enzyme inhibitors.⁴ In addition, *N*-acyl sulfonamides have diverse pharmacological activities such as precursors of therapeutic agents for Alzheimer's disease,⁵ antibacterial inhibitors for tRNA synthetase,⁶ antagonists for Angiotensin II,⁷ prostaglandin Fla sulfonamides for the treatment of osteoporosis and Luekotriene D₄-receptors.⁸

Historically, the N-acylation of sulfonamides has relied on the reaction of a sulfonamide with anhydrides, esters or acid chlorides in basic reaction media using trialkylamines, pyridine⁹ or alkali hydroxides,¹⁰ besides others.¹¹ Direct condensation of a carboxylic acid with a sulfonamide in the presence of coupling agents such as carbodiimides (EDC·HCl or DCC) or N,N'-carbonyldiimidazole (CDI) has also been employed, in which the by-product must be removed from the reaction.¹² Recently, *N*-acylbenzotriazoles were used as acylating agents in the presence of NaH as a base.¹³ Despite the extensive number of Lewis acid catalyzed acylations

* Corresponding author. Tel.: +91 40 27193210; fax: +91 40

27160512; e-mail: rajireddy@iict.res.in

0040-4039/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.08.048

of protic nucleophiles such as alcohols, amines and thiols,¹⁴ the N-acylation of less nucleophilic sulfonamides has not received considerable attention. To our knowledge there are only a few reports in the literature describing the N-acylation of sulfonamides under acidic medium.¹⁵ However, strong acidic conditions, namely, concentrated H₂SO₄ (3 mol %) or Fe-exchanged Montmorillonite K-10 and higher temperature (60 °C) are typically needed to achieve conversion. Thus, the investigation of other Lewis acids as efficient catalysts under mild reaction conditions is required for this transformation. Accordingly, a range of Lewis acids were screened for the N-acylation of benzene sulfonamide in the presence of acetic anhydride at room temperature (Scheme 1, Table 1).

Initially, treatment of readily available benzene sulfonamide **1a** with acetic anhydride in the presence of 10 mol % ZnCl₂ in dichloromethane furnished the expected *N*-acetyl product **2a** in 15 min in 95% yield (entry 1, Table 1). Interestingly, solvent-free conditions (exclusion of dichloromethane) resulted in a rapid reaction (reaction time was reduced from 15 min to

$$\begin{array}{ccc} O & H \\ R-\overset{\parallel}{S}-\overset{\vee}{N} & \xrightarrow{} & R^{2} \\ O & R^{1} & (R^{2}CO)_{2}O, rt & R^{-}\overset{O}{S}-\overset{\vee}{N} \\ O & R^{1} \end{array}$$

R= alkyl, aryl; R¹= H, alkyl; R²= Me, Et, ⁿPr, ^tBu, Ph

Scheme 1.

Keywords: Sulfonamide; Anhydride; N-Acylation; Lewis acid. * IICT Communication No. 070418.

 Table 1. Catalytic activity of various Lewis acids in the N-acetylation of benzene sulfonamide^a

Entry	Lewis acid (mol %)	Time (min)	Yield ^b (%)
1	ZnCl ₂ (10)	15	95°
2	$ZnCl_2$ (10)	2	96
3	$ZnCl_2(5)$	2	96
4	$ZnCl_2$ (3)	2	97
5	$ZnCl_2(1)$	10	78
6	_	720	$0^{\mathbf{d}}$
7	$BF_3 \cdot Et_2O(3)$	3	90
8	$TiCl_4(3)$	2	88
9	$MoCl_5(3)$	3	93
10	$B(C_6F_5)_3(3)$	1	96
11	$Sc(OTf)_3(3)$	2	92
12	$I_2(3)$	300	90

^a Reaction conditions: Ac₂O (1.5 equiv), no solvent, rt.

^b Isolated yield after purification.

^cCH₂Cl₂ was used as solvent.

^d No reaction.

2 min) without loss of chemical yield (entry 2, Table 1). Lowering the concentration of catalyst to 5 mol % and 3 mol % led to similar results, while decreasing it to 1 mol % extended the reaction time and decreased the yield (Table 1, entries 3–5). Notably, no product was observed when the reaction was carried out in the absence of $ZnCl_2$ even after 12 h (Table 1, entry 6). We then tested various other Lewis acids such as BF3. Et_2O , $TiCl_4$, $MoCl_5$, $B(C_6F_5)_3$ and $Sc(OTf)_3$ and obtained similar results as observed in the case of ZnCl₂ (Table 1, entries 7–11). However, the use of I_2 as a catalyst required a longer reaction time (Table 1, entry 12). Although most of these Lewis acids provided good yields of the product, zinc(II) chloride, for obvious reasons (being cheapest, milder conditions and easy to handle) was chosen for further experiments.

To determine the reactivity of various carboxylic acid anhydrides, a series of acid anhydrides were reacted with benzene sulfonamide **1a** in the presence of $3 \mod \frac{1}{2}$ ZnCl₂ under solvent-free reaction conditions. Besides acetic anhydride, the reaction conditions tolerated a diverse array of aliphatic and aromatic anhydrides, Table 2. In general, the more hindered the anhydride, the slower the acylation rate. Acylation with benzoic anhydride (Table 2, entry 6) was up to 20 times slower than those with aliphatic anhydrides. With a suitable set of reaction conditions (3 mol % ZnCl₂, 1.5 equiv of anhydride) in hand,¹⁶ N-acylations of sterically and electronically different sulfonamides were examined. Toluene sulfonamide 1b was converted to its N-acetyl and N-trifluoroacetyl derivatives 2g and 2h in 97% and 93% yields, respectively (Table 2, entries 7 and 8). The presence of a nitro functionality on the aromatic ring did not affect the course of N-acylation with acetic and butyric anhydrides (Table 2, entries 9 and 10). Changing the substrate from an aryl sulfonamide to an alkyl sulfonamide such as methanesulfonamide 1d also gave the desired acylated products (Table 2, entries 11 and 12). To explore the generality and scope further, several N-substituted sulfonamides (secondary), namely, N-benzyl toluene sulfonamide 1e and N-alkylmethanesulfonamides 1f and 1g were also examined for the N-acylation reactions with acetic and propionic anhydrides under the present reaction conditions (Table 2, entries 13–17).

Having obtained these results, it was of interest to determine whether carboxylic acids were capable of undergoing acylation to give the corresponding N-acyl sulfonamides under the reaction conditions described. Hence, we have studied the N-acylation reactions using various carboxylic acids as acylating agents in acidic medium for the first time. Since, benzoic anhydride is the least reactive anhydride, we planned to carry out the acylation directly with the carboxylic acid in the presence of benzoic anhydride by adopting the mixed anhydride method.^{14d} Thus, the aliphatic carboxylic acid, 5-hexynoic acid 3a was treated with benzene sulfonamide in the presence of benzoic anhydride in CH₂Cl₂ with 5 mol % of ZnCl₂ for 1 h to afford the corresponding acvl sulfonamide 4a in 85% vield (Scheme 2). trans-Cinnamic acid 3b was treated with benzene sulfonamide and also with toluene sulfonamide to give the products 4b and 4c in 80% and 84% yields, respectively (Table 3, entries 1 and 2). Satisfactory results were also achieved with other carboxylic acid substrates including 3,4-dimethoxyphenylacetic acid 3c and levulinic acid 3d on reaction with benzene sulfonamide to give the corresponding acyl sulfonamides 4d and 4e (Table 3, entries 3 and 4). The N-acylation of benzene sulfonamide 1a and methane sulfonamide 1d with 2-(4-isobutylphenyl)propionic acid $3e[(\pm)$ -Ibuprofen] furnished the desired *N*-acyl sulfonamides 4f and 4g (Table 3, entries 5 and 6), which possess insignificant biological activity, in enantiomerically pure form.¹⁷

In conclusion, we have demonstrated a Lewis acid catalyzed N-acylation of sulfonamides with acid anhydrides. The ZnCl₂ catalyst used was general for N-acylation with a variety of anhydrides and was also effective in benzoylation and pivalation of sulfonamides. Importantly, the method was extended to the use of carboxylic acids as acylating agents. The advantages of this method include high yields, short reaction times, the use of a commercially available catalyst and solvent-free and mild reaction conditions making this method attractive for potential applications in organic synthesis.

General experimental procedure for N-acylation of sulfonamides with anhydrides: To a mixture of sulfonamide (1.0 mmol) and anhydride (1.5 mmol), 3 mol % of anhydrous ZnCl₂ was added and the reaction stirred for the given time (see Tables 1 and 2). After completion of the reaction (monitored by TLC), the reaction mixture was diluted with dichloromethane and washed with water and brine solution. The combined organic layers were dried over Na₂SO₄ and evaporated in vacuo. The crude compound was purified by column chromatography (hexanes and ethyl acetate) to afford the corresponding N-acylated product.¹⁸

General experimental procedure for N-acylation of sulfonamides with carboxylic acids: To a stirred solution of 5 mol % anhydrous ZnCl₂ in anhydrous dichloromethane, carboxylic acid (1.2 mmol) was added followed by

Table 2. N-Acylation of sulfonamides with anhydrides

Entry	Sulfonamide	Anhydride	Time (min)	Product ^a		Yield ^b (%)
1	SO ₂ NH ₂ 1a	$(RCO)_2O$ R = Me	2	$\bigcup_{\substack{I = 0 \\ I = 0 \\ I = Me}}^{O} \bigcup_{\substack{I = 0 \\ I = Me}}^{O} R$	2a	97
2 3 4 5 6	1a 1a 1a 1a 1a	$R = Et$ $R = {}^{n}Pr$ $R = {}^{r}Bu$ $R = CF_{3}$ $R = Ph$	4 7 60 10 240	$R = Et$ $R = "Pr$ $R = 'Bu$ $R = CF_3$ $R = Ph$	2b 2c 2d 2e 2f	96 95 90 94 88°
7	SO ₂ NH ₂ 1b	$(RCO)_2O$ R = Me	2	$\bigcup_{\substack{I \\ S = N \\ I \\ H \\ O \\ R = Me}}^{O} \bigcup_{R=Me}^{O} R$	2g	97
8	1b	$R = CF_3$	10	$R = CF_3$	2h	93
9	O ₂ N Ic	$(RCO)_2O$ R = Me	3	$O_{2N} \xrightarrow{O_{S-N} O_{R=Me}} O_{R=Me} O$	2i	95
10	1c	$R = {}^{n}Pr$	5	R = "Pr	2j	94
11	MeSO ₂ NH ₂ 1d	$(RCO)_2O$ R = Me	2	$Me = S = N \\ U = Me \\ O = Me \\ R = Me$	2k	98
12	1d	$R = {}^{n}Pr$	3	$R = {}^{n}Pr$	21	96
13	SO ₂ NHBn 1e	$(RCO)_2O$ R = Me	5	$\bigcup_{\substack{S=N\\ S=N\\ O\\ Bn\\ R=Me}}^{O} \bigcap_{R=Me}^{O} R$	2m	94
14	le	$\mathbf{R} = \mathbf{E}\mathbf{t}$	8	$\mathbf{R} = \mathbf{E}\mathbf{t}$	2n	93
15	MeSO ₂ NHBn 1f	$(RCO)_2O$ R = Me	5	$Me \stackrel{O}{\stackrel{H}{\overset{H}{\underset{O}{\overset{Bn}{\underset{Bn}{\underset{R=Me}{\overset{Bn}{\underset{R=Me}{\underset{R=Me}{\overset{Bn}{\underset{R=Me}{\overset{Bn}{\underset{R=Me}{\underset{R=Me}{\overset{Bn}{\underset{R=Me}{\underset{R=Me}{\overset{Bn}{\underset{R=Me}{\underset{R=Me}{\overset{Bn}{\underset{R=Me}{\underset{R}H}{\underset{R=Me}{\underset{R}H}{\underset{R=Me}{\underset{R}H}}{\underset{R}H}}{\underset{R}H}{\underset{R}H}{\underset{R}H}{\underset{R}H}{$	20	95
16	1f	$\mathbf{R} = \mathbf{E}\mathbf{t}$	7	$\mathbf{R} = \mathbf{E}\mathbf{t}$	2p	92
17	NHSO ₂ Me F	(MeCO) ₂ O	2	$\frac{O}{\underset{}{}}$ NSO ₂ Me	2q	96

^a All the products were characterized by ¹H NMR, mass and IR spectroscopy. ^b Isolated yields.

^c CH₂Cl₂ was used as solvent since the two substrates are solids.

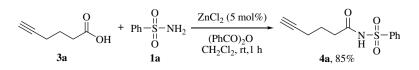


Table 3. N-Acylation of sulfonamides using carboxylic acids^a

Entry	Carboxylic acid	Sulfonamide	Time (h)	Product ^b	Yield ^c (%)
1	O OH 3b	la	2	$\bigcup_{H = H \\ H \\$	80
2	O J OH 3b	1b	2	$ \begin{array}{c} $	84
3	MeO OH MeO 3c	1a	0.75	$\begin{array}{c} MeO \\ MeO \\ MeO \end{array} \qquad \begin{array}{c} H \\ N-S \\ 0 \\ MeO \end{array} \begin{array}{c} 0 \\ 4d \end{array}$	82
4	O J J J J O H J O H	la	1	$ \begin{array}{c} O \\ H \\ H \\ N-S-Ph \\ O \\ 0 \\ 4e \end{array} $	80
5	J OH 3e	1a	1.5	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} } } \\ \end{array} } \\ \end{array} } \\ \end{array} } } } } } } } } } }	85
6	3e	ld	1.5	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	82

^a Reaction conditions: 5 mol % ZnCl₂, 1.2 equiv (PhCO)₂O, CH₂Cl₂, rt.

^b All the products were characterized by ¹H NMR, mass and IR spectroscopy.

^c Isolated yields.

the addition of benzoic anhydride (1.2 mmol) under a nitrogen atmosphere at room temperature. After 10 min, a solution of sulfonamide in CH_2Cl_2 was added and the resulting reaction mixture was stirred for the given time (see Table 3). After completion, the reaction mixture was washed with water then brine and the combined organic layers were dried over Na_2SO_4 and evaporated in vacuo. The crude compound was purified by column chromatography (hexanes and ethyl acetate) to afford the corresponding N-acylated product.¹⁸

Acknowledgements

C.R.R. thanks Dr. J. S. Yadav, Director, IICT for his support and also expresses sincere gratitude to Dr. S. Chandrasekhar for his encouragement and suggestions. B.M. and Y.S.R. thank the CSIR, New Delhi, for financial assistance.

References and notes

(a) Heidler, P.; Link, A. *Bioorg. Med. Chem.* 2005, *13*, 585;
 (b) Singh, S. K.; Vobbalareddy, S.; Kalleda, S. R.; Casturi, S. R.; Mullangi, R.; Ramanujam, R.; Yeleshwarapu, K. R.; Iqbal, J. *Bioorg. Med. Chem. Lett.* 2006, *16*, 3921; (c) Huang, S.; Connolly, P. J.; Lin, R.; Emanuel, S.; Middleton, S. A. *Bioorg. Med. Chem. Lett.* 2006, *16*, 3639.

- (a) Ashton, W. T.; Chang, L. L.; Flanagan, K. L.; Hutchins, S. M.; Naylor, E. M.; Chakravarty, P. K.; Patchett, A. A.; Greenlee, W. J.; Chen, T.-B.; Faust, K. A.; Chang, R. S. L.; Lotti, V. J.; Zingaro, G. J.; Schoran, T. W.; Siegl, P. K. S.; Kivlighn, S. D. J. Med. Chem. 1994, 37, 2808; (b) Allegretti, M.; Bertini, R.; Cesta, M. C.; Bizzarri, C.; Bitondo, R. D.; Cioccio, V. D.; Galliera, E.; Berdini, V.; Topai, A.; Zampella, G.; Russo, V.; Bello, N. D.; Nano, G.; Nicolini, L.; Locati, M.; Fantucci, P.; Florio, S.; Colotta, F. J. Med. Chem. 2005, 48, 4312.
- (a) King, J. F. Acidity. In *The Chemistry of Sulphonic Acids, Esters and Their Derivatives*; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: Chichester, 1991; p 250; (b) Chambers, M. S.; Hobbs, S. C.; Graham, M. I.; Watt, A. P.; Fletcher, S. R.; Baker, R.; Freedman, S. B.; Patel, S.; Smith, A. J.; Matassa, V. G. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 2303; (c) Ye, Y. K.; Bernstein, P. R.; Adams, E. J.; Brown, F. J.; Cronk, L. A.; Hebbel, K. C.; Vacek, E. P.; Krell, R. D.; Snyder, D. W. J. Med. Chem. **1990**, *33*, 2437; (d) Schaaf, T. K.; Bindra, J. S.; Eggler, J. F.; Plattner, J. J.; Nelson, A. J.; Johnson, M. R.; Constantine, J. W.; Hess, H.-J. J. Med. Chem. **1981**, *24*, 1353; (e) Schaaf, T. K.; Hess, H.-J. J. Med. Chem. **1979**, *22*, 1340.
- (a) Larsen, J. D.; Bundgaard, H. Int. J. Pharm. 1987, 37, 87; (b) Bernstein, P. R.; Gomes, B. C.; Kosmider, B. J.; Vacek, E. P.; Williams, J. C. J. Med. Chem. 1995, 38, 212.
- 5. Hasegawa, T.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2000, 73, 423.
- Banwell, M. G.; Crasto, C. F.; Easton, C. J.; Forrest, A. K.; Karoli, T.; March, D. R.; Mensah, L.; Nairn, M. R.; O'Hanlon, P. J.; Oldham, M. D.; Yue, W. *Bioorg. Med. Chem. Lett.* 2000, 10, 2263.

- Chang, L. L.; Ashton, W. T.; Flanagan, K. L.; Chen, T.-B.; O'Malley, S. S.; Zingaro, G. J.; Siegl, P. K. S.; Kivlighn, S. D.; Lotti, V. J.; Chang, R. S. L.; Greenlee, W. J. J. Med. Chem. 1994, 37, 4464.
- (a) Wang, Y.; Soper, D. L.; Dirr, M. J.; deLong, M. A.; De, B.; Wos, J. A. *Chem. Pharm. Bull.* **2000**, *48*, 1332; (b) Musser, J. H.; Kreft, A. F.; Bender, R. H. W.; Kubrak, D. M.; Grimes, D.; Carlson, R. P.; Hand, J. M.; Chang, J. *J. Med. Chem.* **1990**, *33*, 240.
- (a) Kondo, K.; Sekimoto, E.; Nakao, J.; Murakami, Y. *Tetrahedron* **2000**, *56*, 5843; (b) Kondo, K.; Sekimoto, E.; Miki, K.; Murakami, Y. *J. Chem. Soc., Perkin Trans. 1* **1998**, 2973.
- (a) Ishizuka, N.; Matsumura, K.; Hayashi, K.; Sakai, K.; Yamamori, T. *Synthesis* **2000**, *6*, 784; (b) Ishizuka, N.; Matsumura, K. Jpn. Kokai Tokkyo Koho JP 10045705; *Chem. Abstr.* **1998**, *128*, 140463; (c) Inoe, T.; Myahara, O.; Takahashi, A.; Nakamura, Y. Jpn. Kokai Tokkyo Koho JP 08198840; *Chem. Abstr.* **1996**, *125*, 247385.
- (a) Yijima, C.; Hino, F.; Suda, K. *Synthesis* **1981**, 610; (b) Shanguann, N.; Katukojvala, S.; Greenberg, R.; Williams, L. J. *J. Am. Chem. Soc.* **2003**, *125*, 7754.
- EDC·HCI: (a) Berry, D. J.; Digiovanna, C. V.; Metrick, S. S.; Murugan, R. ARKIVOC 2001, *i*, 201; (b) Guzzo, P. R.; Teng, M.; Miller, M. J. Tetrahedron 1994, 50, 8275; CDI: (c) Drummond, J. T.; Johnson, G. Tetrahedron Lett. 1988, 29, 1653; DCC: (d) Johnson, D. C., II.; Widlanski, T. S. Tetrahedron Lett. 2001, 42, 3677; (e) Gomes, P.; Gomes, J. R. B.; Rodrigues, M.; Moreira, R. Tetrahedron 2003, 59, 7473; (f) Wang, Y.; Sarris, K.; Sauer, D. R.; Djuric, S. W. Tetrahedron Lett. 2007, 48, 5181.
- 13. Katritzky, A. R.; Hoffmann, S.; Sukuki, K. *ARKIVOC* 2004, *xii*, 14.
- (a) Greene, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons: New York, 1999; (b) Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1996, 1, 4560; (c) Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. J. Org. Chem. 2001, 66, 8926; (d) Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.; Liu, C.-Y. J. Org. Chem. 2005, 70, 1188; (e) Chakraborti, A. K.; Shivani J. Org. Chem. 2006, 71, 5785, and references cited therein.
- (a) Mosisowa, Y.; Kataoka, M.; Negahori, H.; Sakamoto, T.; Kitano, N.; Kusano, K. J. Med. Chem. 1980, 23, 1376;
 (b) Martin, M. T.; Roschangar, F.; Eaddy, J. F. Tetrahedron Lett. 2003, 44, 5461; (c) Singh, D. U.; Singh, P. R.; Samant, S. D. Tetrahedron Lett. 2004, 45, 4805.
- 16. In order to check the efficiency of the method, a large scale (3 g) acylation of benzene sulfonamide was also carried out using 3 mol % of ZnCl₂ and the reaction proceeded in 8 minutes to give the product 2a in 96% yield.
- 17. The enantiomers of compound **4g** show activity in reperfusion injury treatment and one of the enantiomers (*R*-enantiomer, repertaxin) was selected as a clinical candidate that is now in phase II clinical studies for the prevention of reperfusion injury; see Ref. 2b.
- 18. Spectral data for new products: *N*-(4-Nitrophenylsulfonyl)acetamide (2i): Pale yellow solid, mp 197–199 °C; ¹H NMR (200 MHz, CDCl₃): δ 8.40–8.32 (m, 2H), 8.28–8.20 (m, 2H), 3.23–2.31 (br s, 1H), 2.04 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 150.2, 144.5, 129.2, 124.4, 23.2; IR(KBr): v 3109, 2922, 1717, 1693, 1533, 1465, 1351, 609 cm⁻¹; HRMS-ESI: calcd for C₈H₈N₂O₅NaS, 267.0051; found, 267.0055. *N*-(4-Nitrophenylsulfonyl)butyramide (2j): Semi solid, ¹H NMR (200 MHz, CDCl₃): δ 8.40–8.32 (m, 2H), 8.28–8.20 (m, 2H), 2.23 (t, *J* = 7.3 Hz, 2H), 1.66–1.46 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.8, 150.2, 144.7, 129.2, 124.4, 37.2, 17.4, 13.1; IR(neat): v 3426, 1715, 1651,

 1026 cm^{-1} ; 1351. HRMS-ESI: calcd for 1531. C10H12N2O5NaS, 295.0364; found, 295.0377. N-(Methylsulfonyl)butyramide (21): White solid, mp 72-74 °C; ¹H NMR (200 MHz, CDCl₃): δ 9.23–8.66 (br s, 1H), 3.36 (s, 3H), 2.33 (t, J = 7.3 Hz, 2H), 1.80–1.60 (m, 2H), 0.99 (t, J = 14.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 172.9, 41.5, 38.2, 18.0, 13.5; IR(KBr): v 3198, 2968, 1692, 1460, 1334, 1144, 848 cm⁻¹; HRMS-ESI: calcd for C₅H₁₁NO₃₋ NaS, 188.0357; found, 188.0349. N-Benzyl-N-tosylpropionamide (2n): White solid, mp 159–160 °C; ¹H NMR (200 MHz, CDCl₃): δ 7.69–7.61 (m, 2H), 7.41–7.22 (m, 7H), 5.11 (s, 2H), 2.56 (q, J = 7.0 Hz, 2H), 2.43 (s, 3H), 1.01 (t, J = 7.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 174.1. 144.9, 137.0, 136.9, 129.8, 128.8, 128.0, 127.9, 127.8, 49.6, 29.8, 21.8, 8.8; IR(KBr): v 3396, 2977, 1706, 1354, 1158, 1011, 729, 585 cm⁻¹; HRMS-ESI: calcd for C₁₇H₁₉NO₃NaS, 340.0983; found: 340.0991. N-Benzyl-N-(methylsulfonyl)acetamide (20): White solid, mp 73-75 °C; ¹H NMR (200 MHz, CDCl₃): δ 7.43–7.29 (m, 5H), 5.02 (m, 2H), 3.13 (s, 3H), 2.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.3, 136.2, 128.9, 128.0, 127.4, 49.3, 42.7, 24.8; IR (KBr): v 3386, 2933, 1707, 1450, 1338, 1161, 960, 832, 511 cm⁻¹; HRMS-ESI: calcd for $C_{10}H_{13}NO_3NaS$, 250.0513; found, 250.0520. N-Benzyl-N-(methylsulfon-(**2p**): Viscous liquid; ¹H NMR *vl*)*propionamide* (200 MHz, CDCl₃): δ 7.43–7.29 (m, 5H), 5.02 (m, 2H), 3.20 (s, 3H), 2.59 (q, J = 7.3 Hz, 2H), 1.15 (t, J = 7.3 Hz, 13 C NMR (75 MHz, CDCl₃): δ 174.9, 136.4, 129.0, 3H); ¹ 127.9, 127.1, 48.9, 42.7, 29.6, 8.7; IR(Neat): v 2984, 2940, 1701, 1454, 1351, 1159, 956, 779, 515 cm⁻¹; HRMS-ESI: calcd for C₁₁H₁₅NO₃NaS, 264.0670; found, 264.0661. (*R*)-*N*-(*Methylsulfonyl*)-*N*-(*1*-*phenylethyl*)*acetamide* (**2q**): Viscous liquid; $[\alpha]_D^{25}$ -59.4 (c 1 in CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ 7.59–7.18 (m, 5H), 5.85 (q, J = 7.0 Hz, 1H), 3.10 (s, 3H), 2.23 (s, 3H), 1.86 (d, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.4, 139.5, 128.6, 127.7, 127.1, 55.6, 43.2, 25.9, 18.4; IR (KBr): v 3028, 2938, 1694, 1349, 1238, 1163, 949, 770, 550 cm⁻¹; HRMS-ESI: $(M+H)^+$ calcd for C₁₁H₁₅NO₃NaS, 264.0670: found: 264.0672. N-(Phenvlsulfonvl)hex-5-vnamide (4a): White solid, mp 73–75 °C; ¹H NMR (200 MHz, CDCl₃): δ 9.12-8.80 (br s, 1H), 8.17-8.02 (m, 2H), 7.75-7.49 (m, 3H), 2.44 (t, J = 6.8 Hz, 2H), 2.25–2.10 (m, 2H), 1.96–1.69 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 170.8, 139.6, 134.3, 129.2, 128.4, 83.0, 69.8, 34.8, 22.8, 17.6; IR(neat): v 3272, 3129, 1683, 1458, 1166, 686 cm⁻¹; HRMS-ESI: $(M+H)^+$ calcd for $C_{12}H_{14}NO_3S$, 252.0694; found, 252.0704. N-(Phenylsulfonyl)cinnamamide (4b): White solid, mp 152-154 °C; ¹H NMR (200 MHz, CDCl₃): δ 9.40–9.10 (br s, 1H), 8.22–8.08 (m, 1H), 7.80– 7.27 (m, 10H), 6.48 (d, J = 15.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 163.8, 146.4, 138.7, 134.2, 133.8, 131.1, 129.2, 129.1, 128.6, 128.5, 117.5; IR(KBr): v 3289, 1697, 1626, 1426, 1085 cm⁻¹; HRMS-ESI: calcd for C₁₅H₁₃NO₃NaS, 310.0513; found, 310.0515. 2-(3,4-*Dimethoxyphenyl*)-*N*-(*phenylsulfonyl*)acetamide (4d)Semi solid, ¹H NMR (200 MHz, CDCl₃): δ 8.06–7.94 (m, 1H), 7.74–7.43 (m, 3H), 6.88–6.57 (m, 4H), 3.87 (s, 3H), 3.79 (s, 3H), 3.53 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): *b* 169.0, 149.6, 149.0, 138.5, 134.2, 128.8, 128.5, 124.7, 121.8, 112.3, 112.0, 56.0, 43.5; IR(KBr): v 3425, 2924, 1696, 1454, 1166 cm⁻¹; EIMS: *m*/*z* 358.1 (M+Na). *N-(Phenyl sulfonyl)-4-oxopentanamide* (4e): Semi solid, ¹H NMR (300 MHz, DMSO-d₆): δ 7.71-7.60 (m, 2H), 7.51-7.32 (m, 3H), 2.48 (t, J = 6.2 Hz, 2H), 2.20 (t, J = 6.2 Hz, 2H), 1.92 (s, 3H); ¹³C NMR (75 MHz, DMSO- d_6): δ 207.2, 173.9, 144.2, 132.0, 129.0, 125.6, 37.6, 29.7, 27.7; IR(KBr): v 3349, 3256, 1714, 1695, 1448, 1334 cm⁻¹; EIMS: *m*/*z* 278.0 (M+Na).